Type + realization link | h-Characteristic | Realization of h | sl(2)-module decomposition of the ambient Lie algebra \(\psi=\) the fundamental \(sl(2)\)-weight. | Centralizer dimension | Type of semisimple part of centralizer, if known | The square of the length of the weight dual to h. | Dynkin index | Minimal containing regular semisimple SAs | Containing regular semisimple SAs in which the sl(2) has no centralizer |
\(A^{182}_1\) | (2, 2, 2, 2, 2, 2) | (12, 22, 30, 36, 40, 42) | \(V_{22\psi}+V_{18\psi}+V_{14\psi}+V_{10\psi}+V_{6\psi}+V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 364 | 182 | B^{1}_6; | B^{1}_6; |
\(A^{110}_1\) | (2, 2, 2, 2, 2, 0) | (10, 18, 24, 28, 30, 30) | \(V_{18\psi}+V_{14\psi}+3V_{10\psi}+V_{6\psi}+V_{2\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 220 | 110 | D^{1}_6; B^{1}_5; | D^{1}_6; B^{1}_5; |
\(A^{62}_1\) | (2, 2, 2, 0, 2, 0) | (8, 14, 18, 20, 22, 22) | \(V_{14\psi}+2V_{10\psi}+2V_{8\psi}+2V_{6\psi}+3V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 124 | 62 | B^{1}_6; D^{1}_6; D^{1}_5+A^{2}_1; B^{1}_4+2A^{1}_1; | B^{1}_6; D^{1}_6; D^{1}_5+A^{2}_1; B^{1}_4+2A^{1}_1; |
\(A^{61}_1\) | (2, 2, 2, 1, 0, 1) | (8, 14, 18, 20, 21, 22) | \(V_{14\psi}+V_{10\psi}+2V_{9\psi}+2V_{7\psi}+V_{6\psi}+2V_{2\psi}+3V_{0}\)
| 3 | \(\displaystyle A^{1}_1\) | 122 | 61 | B^{1}_4+A^{1}_1; | B^{1}_4+A^{1}_1; |
\(A^{60}_1\) | (2, 2, 2, 2, 0, 0) | (8, 14, 18, 20, 20, 20) | \(V_{14\psi}+V_{10\psi}+4V_{8\psi}+V_{6\psi}+V_{2\psi}+6V_{0}\)
| 6 | \(\displaystyle 2A^{1}_1\) | 120 | 60 | D^{1}_5; B^{1}_4; | D^{1}_5; B^{1}_4; |
\(A^{38}_1\) | (2, 0, 2, 0, 2, 0) | (6, 10, 14, 16, 18, 18) | \(2V_{10\psi}+V_{8\psi}+4V_{6\psi}+2V_{4\psi}+3V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 76 | 38 | B^{1}_6; D^{1}_6; D^{1}_4+B^{1}_2; B^{1}_3+A^{1}_3; | B^{1}_6; D^{1}_6; D^{1}_4+B^{1}_2; B^{1}_3+A^{1}_3; |
\(A^{35}_1\) | (0, 2, 0, 2, 0, 1) | (5, 10, 13, 16, 17, 18) | \(V_{10\psi}+3V_{8\psi}+V_{6\psi}+2V_{5\psi}+3V_{4\psi}+V_{2\psi}+3V_{0}\)
| 3 | not computed | 70 | 35 | A^{1}_5; | A^{1}_5; |
\(A^{32}_1\) | (2, 2, 0, 0, 2, 0) | (6, 10, 12, 14, 16, 16) | \(V_{10\psi}+2V_{8\psi}+3V_{6\psi}+3V_{4\psi}+4V_{2\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 64 | 32 | D^{1}_5+A^{2}_1; B^{1}_3+A^{1}_2; | D^{1}_5+A^{2}_1; B^{1}_3+A^{1}_2; |
\(A^{30}_1\) | (2, 2, 0, 2, 0, 0) | (6, 10, 12, 14, 14, 14) | \(V_{10\psi}+V_{8\psi}+5V_{6\psi}+V_{4\psi}+5V_{2\psi}+3V_{0}\)
| 3 | \(\displaystyle A^{2}_1\) | 60 | 30 | D^{1}_4+2A^{1}_1; B^{1}_5; D^{1}_5; D^{1}_4+A^{2}_1; B^{1}_3+2A^{1}_1; | D^{1}_4+2A^{1}_1; B^{1}_5; D^{1}_5; D^{1}_4+A^{2}_1; B^{1}_3+2A^{1}_1; |
\(A^{29}_1\) | (2, 2, 1, 0, 1, 0) | (6, 10, 12, 13, 14, 14) | \(V_{10\psi}+2V_{7\psi}+3V_{6\psi}+2V_{5\psi}+2V_{2\psi}+4V_{\psi}+4V_{0}\)
| 4 | \(\displaystyle A^{1}_1\) | 58 | 29 | D^{1}_4+A^{1}_1; B^{1}_3+A^{1}_1; | D^{1}_4+A^{1}_1; B^{1}_3+A^{1}_1; |
\(A^{28}_1\) | (2, 2, 2, 0, 0, 0) | (6, 10, 12, 12, 12, 12) | \(V_{10\psi}+7V_{6\psi}+V_{2\psi}+15V_{0}\)
| 15 | \(\displaystyle A^{1}_3\) | 56 | 28 | D^{1}_4; B^{1}_3; | D^{1}_4; B^{1}_3; |
\(A^{22}_1\) | (0, 2, 0, 0, 2, 0) | (4, 8, 10, 12, 14, 14) | \(V_{8\psi}+5V_{6\psi}+3V_{4\psi}+6V_{2\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 44 | 22 | D^{1}_4+B^{1}_2; A^{1}_4+A^{2}_1; | D^{1}_4+B^{1}_2; A^{1}_4+A^{2}_1; |
\(A^{20}_1\) | (1, 0, 1, 1, 0, 1) | (4, 7, 10, 12, 13, 14) | \(2V_{7\psi}+2V_{6\psi}+2V_{5\psi}+3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}\)
| 3 | not computed | 40 | 20 | A^{1}_3+B^{1}_2; | A^{1}_3+B^{1}_2; |
\(A^{20}_1\) | (0, 2, 0, 2, 0, 0) | (4, 8, 10, 12, 12, 12) | \(V_{8\psi}+3V_{6\psi}+7V_{4\psi}+3V_{2\psi}+4V_{0}\)
| 4 | \(\displaystyle A^{2}_1\) | 40 | 20 | 2A^{1}_3; A^{1}_3+B^{1}_2; A^{1}_4; | 2A^{1}_3; A^{1}_3+B^{1}_2; A^{1}_4; |
\(A^{14}_1\) | (2, 0, 0, 2, 0, 0) | (4, 6, 8, 10, 10, 10) | \(3V_{6\psi}+5V_{4\psi}+10V_{2\psi}+2V_{0}\)
| 2 | \(\displaystyle 0\) | 28 | 14 | B^{1}_4+2A^{1}_1; D^{1}_4+2A^{1}_1; A^{1}_3+A^{2}_1+2A^{1}_1; B^{1}_2+4A^{1}_1; D^{1}_4+A^{2}_1; A^{1}_3+A^{1}_2; B^{1}_2+A^{1}_2; | B^{1}_4+2A^{1}_1; D^{1}_4+2A^{1}_1; A^{1}_3+A^{2}_1+2A^{1}_1; B^{1}_2+4A^{1}_1; D^{1}_4+A^{2}_1; A^{1}_3+A^{1}_2; B^{1}_2+A^{1}_2; |
\(A^{13}_1\) | (2, 0, 1, 0, 1, 0) | (4, 6, 8, 9, 10, 10) | \(2V_{6\psi}+2V_{5\psi}+2V_{4\psi}+4V_{3\psi}+5V_{2\psi}+4V_{\psi}+3V_{0}\)
| 3 | \(\displaystyle A^{1}_1\) | 26 | 13 | B^{1}_4+A^{1}_1; D^{1}_4+A^{1}_1; A^{1}_3+A^{2}_1+A^{1}_1; B^{1}_2+3A^{1}_1; | B^{1}_4+A^{1}_1; D^{1}_4+A^{1}_1; A^{1}_3+A^{2}_1+A^{1}_1; B^{1}_2+3A^{1}_1; |
\(A^{12}_1\) | (2, 1, 0, 0, 0, 1) | (4, 6, 7, 8, 9, 10) | \(V_{6\psi}+4V_{5\psi}+4V_{3\psi}+7V_{2\psi}+10V_{0}\)
| 10 | not computed | 24 | 12 | B^{1}_2+2A^{1}_1; | B^{1}_2+2A^{1}_1; |
\(A^{12}_1\) | (2, 0, 2, 0, 0, 0) | (4, 6, 8, 8, 8, 8) | \(2V_{6\psi}+6V_{4\psi}+8V_{2\psi}+10V_{0}\)
| 10 | \(\displaystyle B^{1}_2\) | 24 | 12 | A^{1}_3+2A^{1}_1; B^{1}_4; D^{1}_4; A^{1}_3+A^{2}_1; B^{1}_2+2A^{1}_1; | A^{1}_3+2A^{1}_1; B^{1}_4; D^{1}_4; A^{1}_3+A^{2}_1; B^{1}_2+2A^{1}_1; |
\(A^{12}_1\) | (0, 1, 1, 0, 1, 0) | (3, 6, 8, 9, 10, 10) | \(V_{6\psi}+2V_{5\psi}+3V_{4\psi}+6V_{3\psi}+4V_{2\psi}+2V_{\psi}+4V_{0}\)
| 4 | not computed | 24 | 12 | A^{1}_3+2A^{1}_1; A^{1}_3+A^{2}_1; | A^{1}_3+2A^{1}_1; A^{1}_3+A^{2}_1; |
\(A^{11}_1\) | (2, 1, 0, 1, 0, 0) | (4, 6, 7, 8, 8, 8) | \(V_{6\psi}+2V_{5\psi}+4V_{4\psi}+2V_{3\psi}+2V_{2\psi}+8V_{\psi}+9V_{0}\)
| 9 | \(\displaystyle 3A^{1}_1\) | 22 | 11 | A^{1}_3+A^{1}_1; B^{1}_2+A^{1}_1; | A^{1}_3+A^{1}_1; B^{1}_2+A^{1}_1; |
\(A^{11}_1\) | (0, 2, 0, 0, 0, 1) | (3, 6, 7, 8, 9, 10) | \(V_{6\psi}+7V_{4\psi}+2V_{3\psi}+6V_{2\psi}+2V_{\psi}+6V_{0}\)
| 6 | not computed | 22 | 11 | A^{1}_3+A^{1}_1; | A^{1}_3+A^{1}_1; |
\(A^{10}_1\) | (2, 2, 0, 0, 0, 0) | (4, 6, 6, 6, 6, 6) | \(V_{6\psi}+8V_{4\psi}+V_{2\psi}+28V_{0}\)
| 28 | \(\displaystyle D^{1}_4\) | 20 | 10 | A^{1}_3; B^{1}_2; | A^{1}_3; B^{1}_2; |
\(A^{10}_1\) | (0, 2, 0, 1, 0, 0) | (3, 6, 7, 8, 8, 8) | \(V_{6\psi}+3V_{4\psi}+10V_{3\psi}+V_{2\psi}+13V_{0}\)
| 13 | not computed | 20 | 10 | A^{1}_3; | A^{1}_3; |
\(A^{8}_1\) | (0, 0, 0, 2, 0, 0) | (2, 4, 6, 8, 8, 8) | \(6V_{4\psi}+14V_{2\psi}+6V_{0}\)
| 6 | not computed | 16 | 8 | A^{1}_2+A^{2}_1+2A^{1}_1; 2A^{1}_2; | A^{1}_2+A^{2}_1+2A^{1}_1; 2A^{1}_2; |
\(A^{7}_1\) | (0, 0, 1, 0, 1, 0) | (2, 4, 6, 7, 8, 8) | \(3V_{4\psi}+6V_{3\psi}+7V_{2\psi}+6V_{\psi}+6V_{0}\)
| 6 | not computed | 14 | 7 | A^{1}_2+A^{2}_1+A^{1}_1; | A^{1}_2+A^{2}_1+A^{1}_1; |
\(A^{6}_1\) | (0, 0, 2, 0, 0, 0) | (2, 4, 6, 6, 6, 6) | \(3V_{4\psi}+18V_{2\psi}+9V_{0}\)
| 9 | not computed | 12 | 6 | 6A^{1}_1; A^{2}_1+4A^{1}_1; A^{1}_2+2A^{1}_1; A^{1}_2+A^{2}_1; | 6A^{1}_1; A^{2}_1+4A^{1}_1; A^{1}_2+2A^{1}_1; A^{1}_2+A^{2}_1; |
\(A^{5}_1\) | (0, 1, 0, 1, 0, 0) | (2, 4, 5, 6, 6, 6) | \(V_{4\psi}+4V_{3\psi}+10V_{2\psi}+10V_{\psi}+7V_{0}\)
| 7 | \(\displaystyle A^{2}_1+A^{1}_1\) | 10 | 5 | 5A^{1}_1; A^{2}_1+3A^{1}_1; A^{1}_2+A^{1}_1; | 5A^{1}_1; A^{2}_1+3A^{1}_1; A^{1}_2+A^{1}_1; |
\(A^{4}_1\) | (1, 0, 0, 0, 1, 0) | (2, 3, 4, 5, 6, 6) | \(4V_{3\psi}+9V_{2\psi}+12V_{\psi}+11V_{0}\)
| 11 | not computed | 8 | 4 | 4A^{1}_1; A^{2}_1+2A^{1}_1; | 4A^{1}_1; A^{2}_1+2A^{1}_1; |
\(A^{4}_1\) | (0, 2, 0, 0, 0, 0) | (2, 4, 4, 4, 4, 4) | \(V_{4\psi}+17V_{2\psi}+22V_{0}\)
| 22 | \(\displaystyle B^{1}_3\) | 8 | 4 | 4A^{1}_1; A^{2}_1+2A^{1}_1; A^{1}_2; | 4A^{1}_1; A^{2}_1+2A^{1}_1; A^{1}_2; |
\(A^{3}_1\) | (1, 0, 1, 0, 0, 0) | (2, 3, 4, 4, 4, 4) | \(2V_{3\psi}+8V_{2\psi}+14V_{\psi}+18V_{0}\)
| 18 | \(\displaystyle A^{1}_3+A^{1}_1\) | 6 | 3 | 3A^{1}_1; A^{2}_1+A^{1}_1; | 3A^{1}_1; A^{2}_1+A^{1}_1; |
\(A^{3}_1\) | (0, 0, 0, 0, 0, 1) | (1, 2, 3, 4, 5, 6) | \(15V_{2\psi}+6V_{\psi}+21V_{0}\)
| 21 | not computed | 6 | 3 | 3A^{1}_1; | 3A^{1}_1; |
\(A^{2}_1\) | (2, 0, 0, 0, 0, 0) | (2, 2, 2, 2, 2, 2) | \(11V_{2\psi}+45V_{0}\)
| 45 | \(\displaystyle D^{1}_5\) | 4 | 2 | 2A^{1}_1; A^{2}_1; | 2A^{1}_1; A^{2}_1; |
\(A^{2}_1\) | (0, 0, 0, 1, 0, 0) | (1, 2, 3, 4, 4, 4) | \(6V_{2\psi}+20V_{\psi}+20V_{0}\)
| 20 | not computed | 4 | 2 | 2A^{1}_1; | 2A^{1}_1; |
\(A^{1}_1\) | (0, 1, 0, 0, 0, 0) | (1, 2, 2, 2, 2, 2) | \(V_{2\psi}+18V_{\psi}+39V_{0}\)
| 39 | \(\displaystyle B^{1}_4+A^{1}_1\) | 2 | 1 | A^{1}_1; | A^{1}_1; |